Skip to Content
Python Machine Learning, Second Edition - Second Edition
book

Python Machine Learning, Second Edition - Second Edition

by Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun
September 2017
Intermediate to advanced content levelIntermediate to advanced
622 pages
15h 13m
English
Packt Publishing
Content preview from Python Machine Learning, Second Edition - Second Edition

Saving and restoring a model in TensorFlow

In the previous section, we built a graph and trained it. How about doing the actual prediction on the held out test set? The problem is that we did not save the model parameters; so, once the execution of the preceding statements are finished and we exit the tf.Session environment, all the variables and their allocated memories are freed.

One solution is to train a model, and as soon as the training is finished, we can feed it our test set. However, this is not a good approach since deep neural network models are typically trained over multiple hours, days, or even weeks.

The best approach is to save the trained model for future use. For this purpose, we need to add a new node to the graph, an instance ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Python Machine Learning

Python Machine Learning

Sebastian Raschka

Publisher Resources

ISBN: 9781787125933Supplemental Content