Skip to Content
Python Machine Learning, Second Edition - Second Edition
book

Python Machine Learning, Second Edition - Second Edition

by Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun
September 2017
Intermediate to advanced content levelIntermediate to advanced
622 pages
15h 13m
English
Packt Publishing
Content preview from Python Machine Learning, Second Edition - Second Edition

Organizing clusters as a hierarchical tree

In this section, we will take a look at an alternative approach to prototype-based clustering: hierarchical clustering. One advantage of hierarchical clustering algorithms is that it allows us to plot dendrograms (visualizations of a binary hierarchical clustering), which can help with the interpretation of the results by creating meaningful taxonomies. Another useful advantage of this hierarchical approach is that we do not need to specify the number of clusters up front.

The two main approaches to hierarchical clustering are agglomerative and divisive hierarchical clustering. In divisive hierarchical clustering, we start with one cluster that encompasses all our samples, and we iteratively split the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Python Machine Learning

Python Machine Learning

Sebastian Raschka

Publisher Resources

ISBN: 9781787125933Supplemental Content