Skip to Content
Python Machine Learning, Second Edition - Second Edition
book

Python Machine Learning, Second Edition - Second Edition

by Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun
September 2017
Intermediate to advanced content levelIntermediate to advanced
622 pages
15h 13m
English
Packt Publishing
Content preview from Python Machine Learning, Second Edition - Second Edition

Summary

In this chapter, we looked at some of the most popular and widely used techniques for ensemble learning. Ensemble methods combine different classification models to cancel out their individual weaknesses, which often results in stable and well-performing models that are very attractive for industrial applications as well as machine learning competitions.

At the beginning of this chapter, we implemented MajorityVoteClassifier in Python, which allows us to combine different algorithms for classification. We then looked at bagging, a useful technique to reduce the variance of a model by drawing random bootstrap samples from the training set and combining the individually trained classifiers via majority vote. Lastly, we learned about AdaBoost, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Python Machine Learning

Python Machine Learning

Sebastian Raschka

Publisher Resources

ISBN: 9781787125933Supplemental Content