Skip to Content
Python Machine Learning, Second Edition - Second Edition
book

Python Machine Learning, Second Edition - Second Edition

by Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun
September 2017
Intermediate to advanced content levelIntermediate to advanced
622 pages
15h 13m
English
Packt Publishing
Content preview from Python Machine Learning, Second Edition - Second Edition

Chapter 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In the previous chapters, you learned about the essential machine learning algorithms for classification and how to get our data into shape before we feed it into those algorithms. Now, it's time to learn about the best practices of building good machine learning models by fine-tuning the algorithms and evaluating the model's performance! In this chapter, we will learn how to do the following:

  • Obtain unbiased estimates of a model's performance
  • Diagnose the common problems of machine learning algorithms
  • Fine-tune machine learning models
  • Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines

When we applied different preprocessing ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Python Machine Learning

Python Machine Learning

Sebastian Raschka

Publisher Resources

ISBN: 9781787125933Supplemental Content