Skip to Content
Python Machine Learning, Second Edition - Second Edition
book

Python Machine Learning, Second Edition - Second Edition

by Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun
September 2017
Intermediate to advanced content levelIntermediate to advanced
622 pages
15h 13m
English
Packt Publishing
Content preview from Python Machine Learning, Second Edition - Second Edition

Summary

In this chapter, we learned how to use machine learning algorithms to classify text documents based on their polarity, which is a basic task in sentiment analysis in the field of NLP. Not only did we learn how to encode a document as a feature vector using the bag-of-words model, but we also learned how to weight the term frequency by relevance using tf-idf.

Working with text data can be computationally quite expensive due to the large feature vectors that are created during this process; in the last section, we learned how to utilize out-of-core or incremental learning to train a machine learning algorithm without loading the whole dataset into a computer's memory.

Lastly, we introduced the concept of topic modeling using LDA to categorize ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Python Machine Learning

Python Machine Learning

Sebastian Raschka

Publisher Resources

ISBN: 9781787125933Supplemental Content